Cyclodimerizations of Alkyl Styryl Ketones and Their Silyl Enol Ethers by Use of Iron Carbonyls

Tatsuo UEDA and Yoshio OTSUJI*

Department of Chemistry, College of Engineering,
University of Osaka Prefecture, Sakai, Osaka 591

The reaction of alkyl styryl ketones with $\operatorname{Fe}_3(\operatorname{CO})_{12}$ gives 3-acyl-4,5-diphenylcyclohexanones in a manner of [2+4] cyclodimerization. $(\eta^4$ -Enone)Fe(CO) $_3$ complexes serve as catalyst for this reaction. Silyl enol ethers of the same ketones afford 4-acyl-3,5-diphenylcyclohexanones in the different type of [2+4] cyclodimerization upon treatment with $\operatorname{Fe}_3(\operatorname{CO})_{12}$.

In a previous paper, we have reported that the reaction of unenolizable α,β -unsaturated ketones such as benzylideneacetophenone with Fe $_3(CO)_{12}$ in refluxing toluene gives cyclopentene derivatives in high yields. This reaction has been interpreted as a deoxygenative [2+3] cyclodimerization of intermediary (η^4 -enone)tricarbonyliron complexes. We now report that enolizable α,β -unsaturated ketones such as alkyl styryl ketones and their silyl enol ethers undergo respectively different types of [2+4] cyclodimerizations upon treatment with Fe $_3(CO)_{12}$. Alkyl styryl ketones were converted into 3-acyl-4,5-diphenyl-cyclohexanones via their tricarbonyliron complexes. It was also found that $(\eta^4$ -enone)tricarbonyliron complexes serve as effective catalyst for this conversion. On the other hand, silyl enol ethers of the same ketones were converted into 4-acyl-3,5-diphenylcyclohexanones probably via their iron enolates.

A mixture of methyl styryl ketone ($\underline{1a}$; 876 mg, 6 mmol) and Fe $_3$ (CO) $_{12}$ (503 mg, 1 mmol) in dry toluene (10 cm 3) was refluxed for 20 h under nitrogen and poured onto I $_2$ -benzen solution. The resulting mixture was stirred for 1 h at

Table 1.	Reaction of	alkyl styryl	ketones	with iron carbonyls
Ketone	Iron carl	oonyl	Product	Yield/% ^{a)}
<u>1a</u>	Fe ₃ (CO) ₁₂ ,	2 mmol	<u>2a</u>	58 (87)
<u>1a</u>	Fe ₃ (CO) ₁₂ ,	1 mmol	<u>2a</u>	62 (186)
<u>1a</u>	Fe ₃ (CO) ₁₂ ,	0.5 mmol	<u>2a</u>	52 (312)
<u>1a</u>	Fe(CO) ₅ ,	3 mmol	no	reaction
<u>1a</u>	Fe ₂ (CO) ₉ ,	1.5 mmol	<u>2a</u>	26 (52)
<u>1b</u>	Fe ₃ (CO) ₁₂ ,	2 mmol	<u>2b</u>	90 (135)
<u>1c</u>	Fe ₃ (CO) ₁₂ ,	2 mmol	<u>2c</u>	89 (134)
<u>1d</u>	Fe ₃ (CO) ₁₂ ,	2 mmol	<u>2d</u>	33 (50)

a) Isolated yields based on ketones $\underline{1}$ used, and those in parentheses based on iron carbonyls used.

room temperature and then washed successively with 10% aqueous NaOH, water, 10% HCl, and water. The organic layer was dried over Na₂SO₄ and evaporated. Chromatography of the residue on silica gel with benzene gave 543 mg (62%) of 3-acetyl-4,5-diphenylcyclohexanone (2a). In a similar manner, ethyl, propyl, and isopropyl styryl ketones (1b-d) were converted into the corresponding 2-substituted 3-acyl-4,5-diphenylcyclohexanones 2b-d. The results are summa rized in Table 1. The structures of the products were assigned from their IR and ¹H-NMR, ¹³C-NMR, and Mass spectral data. ²)

The efficiency of this dimerization reaction depended on iron carbonyl complexes employed. The reaction of $\underline{1a}$ with Fe(CO)_5 under the similar conditions as above resulted in a quantitative recovery of the starting ketone. Fe₂(CO)₉ induced the cyclodimerization of $\underline{1a}$ with a lower efficiency. The results are also given in Table 1.

Lewis et al. have reported that the reaction of $\underline{1a}$ with iron carbonyls at ambient temperatures affords (${}_1^4$ -methylstyrylketone)tricarbonyliron ($\underline{3a}$). We also isolated the iron complexes $\underline{3a-d}$ by the reaction of $\underline{1a-d}$ with Fe $_3$ (CO) $_{12}$ in toluene at 75 °C for 7 h in good yields. Furthermore, it was found that when degassed toluene solutions of $\underline{1a-c}$ (40 mmol) containing a catalytic amount of

Table 2. $(\eta^4$ -Enone)tricarbonyliron-catalyzed cyclodimerization

of	alkyl styryl ket	ones	
Ketone	Catalyst	Product	Yield / % ^{a)}
<u>1a</u>	<u>3a</u>	<u>2a</u>	11 (2250)
<u>1b</u>	<u>3a</u>	<u>2b</u>	15 (3000)
<u>1c</u>	<u>3a</u>	<u>2c</u>	14 (2750)
<u>1a</u>	<u>3b</u>	<u>2a</u>	25 (4920)
<u>1b</u>	<u>3b</u>	<u>2b</u>	81 (16200)
<u>1c</u>	<u>3b</u>	<u>2c</u>	60 (11900)
<u>1c</u>	<u>3c</u>	<u>2c</u>	53 (10600)

a) Yields were determined by GLC and based on ketones $\underline{1}$ used, and those in parentheses based on iron complexes $\underline{3}$ used.

 $(\eta^4\text{-enone})$ tricarbonyliron <u>3a</u> (0.1 mmol) are heated in sealed tubes at 110 °C for 22 h, <u>2a-c</u> are obtained in good yields. Other $(\eta^4\text{-enone})$ tricarbonyliron complexes such as <u>3b-c</u> also served as catalyst for the conversion of <u>1a-c</u> to <u>2a-c</u>. The results are shown in Table 2.

However, complexes $\text{Fe(CO)}_4\text{PPh}_3$, $\text{Fe(CO)}_3(\text{PPh}_3)_2$, $\text{Fe(CO)}_3[\text{P(OPh)}_3]_2$, $(\eta^2-\text{maleic anhydride})\text{Fe(CO)}_4$, $(\eta^4-\text{cyclooctadiene})\text{Fe(CO)}_3$, and $(\eta^4-\text{PhCH=CHCH=CHPh})\text{Fe-(CO)}_3$ were ineffective as catalyst; in the reactions using these iron complexes the substrate enones were recovered unchanged. Barton⁴) and Brookhart⁵) have demonstrated that 3a acts as an efficient transfer agent of $[\text{Fe(CO)}_3]$ species towards dienes and other unsaturated compounds. Scheme 1 shows a possible catalytic cycle for the cyclodimerization of enolizable enone 1. A key step is the formation of dienol complex 10 from 10 from 10 from cyclohexanone derivative 11 with elimination of 11 species.

Table 3. Cyclodimerization of silyl enol ethera)

2 PhCH=CH-C=CHR OSiMe₃

$$\frac{5a-c}{}$$
Fe₃(CO)₁₂

$$Ph Ph C=O CH2R
$$\frac{6a-c}{}$$$$

Silyl enol ether	Product	Yield/% ^{b)}
<u>5a</u> ; R=H	<u>6a</u>	32 (95)
<u>5b</u> ; R=CH ₃	<u>6b</u>	36 (108)
5c; R=CH ₂ CH ₃	<u>6c</u>	32 (96)

a) A mixture of $\underline{5}$ (6 mmol) and $\operatorname{Fe_3(CO)}_{12}$ (1 mmol) in toluene (10 cm³) was stirred at 110 °C for 20 h under nitrogen. b) Isolated yields based on $\underline{4}$ used, and those in parentheses based on $\operatorname{Fe_3(CO)}_{12}$ used.

1638 Chemistry Letters, 1986

In contrast, the reaction of silyl enol ethers $\underline{5a-c}$, which were derived from $\underline{1a-c}$, with $\mathrm{Fe_3(CO)_{12}}$ in refluxing toluene gave 2-substituted 4-acyl-3,5-diphylcyclohexanones $\underline{6a-c}$, that are regioisomers of $\underline{2a-c}$. The results are shown in Table 3. The structures of $\underline{6a-c}$ were assigned from their spectral data. 7)

Nielsen and Dubin have reported that the same type of cyclohexanone derivatives as $\underline{6a-c}$ can be obtained from alkyl styryl ketones by a base-catalyzed self-condensation reaction in low yields. These results strongly suggest that the cyclodimerization of silyl enol ethers $\underline{5}$ with $\mathrm{Fe_3(CO)_{12}}$ proceeds via iron enolate $\underline{7}$ as shown in Scheme 2.

PhCH=CH-C=CHR
$$\xrightarrow{\text{Fe}_3(\text{CO})_{12}}$$
 PhCH=CH-C=CHR $\xrightarrow{\text{O}}$ Ph CH=CH-C=CHR $\xrightarrow{\text{O}}$ Ph C=O $\xrightarrow{\text{CH}_2R}$ $\xrightarrow{\text{CH}_2R}$

Scheme 2.

References

- 1) T. Ueda and Y. Otsuji, the preceding paper.
- 2) Spectral data of $\underline{2a}$: $^{13}\text{C-NMR}$ (CDCl $_3$) $\delta(\text{ppm})$ 31.7($\underline{\text{CH}}_3$), 40.7, 41.1($\underline{\text{CH}}_2$), 42.9, 44.3, 58.4($\underline{\text{CH}}\leq$), 126.9, 127.1, 127.6, 128.2, 128.6, 128.8(aromatic = $\underline{\text{CH}}$ -), 140.2, 143.1(aromatic = $\underline{\text{C}}\leq$), 210.5, 210.7($\underline{\text{C}}$ =0); $^{1}\text{H-NMR}$ (CDCl $_3$) $\delta(\text{ppm})$ 1.6(s, 3H), 2.4-3.2(m, 4H), 3.4-3.6(m, 3H), 7.0-7.9(10H, ArH); IR (KBr) 1710, 1630 cm $^{-1}(\nu_{\text{CO}})$; MS m/e 292 (M $^+$). The spectral data for $\underline{\text{2b-e}}$ were also consistent with the assigned structures.
- 3) J. A. S. Howell, B. F. G. Johnson, P. L. Josty, and J. Lewis, J. Organomet. Chem., 39, 329 (1972).
- 4) D. H. R. Barton, A. A. L. Gunatilaka, T. Nakanishi, H. Patin, D. A. Widdowson, and B. R. Worth, J. Chem. Soc., Perkin Trans. 1, 1976, 821.
- 5) C. R. Graham, G. Scholes, and M. Brookhart, J. Am. Chem. Soc., <u>99</u>, 1180 (1977).
- 6) C. H. DePuy, R. L. Parton, and T. Jones, J. Am. Chem. Soc., <u>99</u>, 4070 (1977); C. H. DePuy, R. N. Greene, and T. E. Schroer, J. Chem. Soc., Chem. Commun., 1968, 1225.
- 7) Spectral data of <u>6a</u>: $^{13}\text{C-NMR}$ (CDCl₃) $\delta(\text{ppm})$ 33.0(<u>C</u>H₃), 47.8(<u>C</u>H₂), 47.2, 62.0 (<u>C</u>H₄), 127.3, 127.5, 129.0(aromatic = <u>C</u>H₋), 141.1(aromatic = <u>C</u><), 207.5, 210.4 (<u>C</u>=0); $^{1}\text{H-NMR}$ (CDCl₃) $\delta(\text{ppm})$ 1.25(s, 3H), 2.68(broad d, J=6 Hz, 4H), 3.0-3.5 (m, 3H), 7.2(10H, ArH); IR (KBr) 1710, 1670 cm⁻¹(ν_{CO}); MS m/e 292 (M⁺). The spectral data for <u>6b,c</u> were also consistent with the assigned structures.
- 8) A. T. Nielsen and H. J. Dubin, J. Org. Chem., <u>28</u>, 2120 (1963).